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Flow in a closed loop thermosyphon heated from below exhibits a sequence of bifurcations
with increasing Grashof number. Using the Navier-Stokes equations in the Boussinesq
approximation we have derived a model where, in the case of a slender circular loop, the
first Fourier modes exactly decouple from all other Fourier modes, leaving a system of
three coupled nonlinear partial differential equations that completely describes the flow in
the thermosyphon. We have characterized the flow through two bifurcations, identifying
stable periodic solutions for flows of Prandtl number greater than 18.5, a much lower
value than predicted previously. Because of the quadratic nonlinearity in this system of
equations, it is possible to find the global stability limit, and we have proved it is identical
to the first bifurcation point.

The numerical study of the model equations is based on a highly accurate Fourier-
Chebyshev spectral method, combined with asymptotic analysis at the various bifurca-
tion points. Three-dimensional computations with a finite element method computational
fluid dynamics code (MPSalsa), are also pursued. All three approaches are in close agree-
ment.

1. Introduction
When a closed vertical loop of fluid is heated from below, a sequence of bifurcations

ensues, leading from pure conduction, to a convective unidirectional flow, to periodic
or chaotic flow. This is the problem of convection in a closed loop thermosyphon, also
called a natural convection loop. This problem has implications for the performance of
heating/cooling systems (Martin & Sloley 1995; Japikse 1973). Moreover, it offers useful
insights into general convective phenomena. The problem is appealing because of the
possibility of observing complicated behaviour in a physically simple system.

Pioneering work in this field was done by Keller (1966) and Welander (1967) who
identified that unsteady flow results directly from the dynamics of the system, rather
than from an unsteady force. Recent mathematical models by Velázquez (1994) and
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Rodŕıguez-Bernal & Vleck (1998b) focus on the transition to complex dynamics. These
works have modeled viscous and inertial terms with friction factors, leading to predictions
of complex dynamical behaviour in qualitative agreement with observations. Also, recent
works by Yuen & Bau (1996), Wang et al. (1992), and Boskovic & Krstic (2001) have
used feedback to control the onset of chaos. For a thorough survey of the early literature
on this problem, see the review article by Greif (1988).

This problem is a variation of the well-studied Rayleigh-Bénard problem. In Rayleigh-
Bénard convection, a layer of viscous fluid is heated from below. One finds that instability
arises after a critical temperature gradient has been reached, and that the motions seen
following this instability have a stationary cellular structure (Chandrasekhar 1961). Un-
der suitable boundary conditions, a secondary structure arises where the fluid forms rolls,
which undergo a Hopf bifurcation and become oscillatory (Salinger et al. 2005; Busse &
Clever 1979; Willis & Deardorff 1970).

The Lorenz system, involving three ordinary differential equations, has most frequently
been used as a model for the flow in a thermosyphon (Rodŕıguez-Bernal & Vleck 1998a;
Greif 1988). In particular, the model displays periodic and chaotic flows for various
parameter ranges (Lorenz 1963; Shimizu & Morioka 1978; Morioka & Shimizu 1978). Ex-
perimental studies also report oscillations for various parameter ranges (Stern et al. 1988;
Sano 1991). The Lorenz equations involve several parameters that must be measured ex-
perimentally or computed by making assumptions on the shapes of the temperature and
velocity profiles in the thermosyphon. In this paper, rather than reducing the equations
to a system of ordinary differential equations, we create a reduced order set of partial
differential equations involving only two spatial coordinates.

We derive this system of partial differential equations by assuming purely azimuthal
(toroidal) flow along the loop. We represent the toroidal coordinate as a periodic axial
direction, thus neglecting curvature effects along the loop, and we account for gravity
effects through a gravity function that depends on the axial position. We are led in
this way to a three-dimensional system of partial differential equations that makes the
assumption that the flow at any cross-section is purely axial. For loops with small enough
aspect ratio (the ratio of the radius of the cross-section to the length of the loop) we
believe this assumption is well-justified. By using a modal expansion, these equations
can be written as an infinite system of partial differential equations involving only two
spatial coordinates. We show that for the case of a circular loop, this system rigorously
reduces to a system of three partial differential equations, where the axial coordinate has
been averaged out. We also show that for arbitrarily shaped symmetric loops, the linear
stability of the conducting solution can be reduced to this same set of partial differential
equations.

Our reduced-order system of partial differential equations has the advantage over the
Lorenz model that no assumptions are needed about the shape of the velocity and tem-
perature profiles. At the first bifurcation point, these profiles are found to be given by the
Bessel function J0 on the interval from zero to its first zero, γ01. Although this function
looks similar to a quadratic function, the result obtained from deriving the Lorenz equa-
tions based on the assumption that the profiles are quadratic is off by almost a factor
of two in predicting the onset of convection. As the governing parameter, the Grashof
number, is raised beyond its critical value, the profiles look increasingly less like quadrat-
ics. At Grashof numbers near the Hopf bifurcation point, there is little justification for
assuming that the profiles are quadratic.

For the case of loops of circular cross-section, we assume solutions with radial sym-
metry, and our equations involve only one spatial coordinate. We use highly accurate
spectral numerical methods to analyse this system. Excellent agreement is found be-
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tween asymptotic analysis and simulations of the reduced model. Further comparisons of
the predictions of the reduced model were pursued with numerical simulations of the full
three-dimensional Navier-Stokes equations in the Boussinesq approximation, using the
code MPSalsa (Salinger et al. 1999, 1996; Shadid et al. 1999), developed at Sandia Na-
tional Laboratories to compute solutions to reacting flow problems on massively parallel
computers. Again, good agreement was found in the ranges where the latter are feasible,
i.e., around the onset of convection. However, full three-dimensional calculations near
the Hopf bifurcation require prohibitively high resolution and they proved unfeasible.

Two dimensionless parameters characterize the flow: the Prandtl number Pr (2.13), a
property of the fluid, the ratio of kinematic viscosity ν to thermal diffusivity κ, and the
Grashof number Gr (2.14), which is proportional to the thermal gradient. Linearizing
about the numerically computed purely conducting trivial state, one arrives at an eigen-
value problem from which we identify the onset of convection as a pitchfork bifurcation
at a critical value of the Grashof number, Grp. This value is independent of the Prandtl
number. Using energy methods, we formulate a variational problem that proves that the
trivial solution is globally stable for Gr < Grp. We use continuation in Grashof number
to numerically follow the convecting branch and also linearise the flow about the numeri-
cally computed convective state to determine the onset of a Hopf bifurcation at a second
critical value, Grh > Grp. The oscillations located in the present model correspond to
a pulsating flow where the period of oscillation is roughly equal to the time it takes for
fluid to circulate around the loop.

The location of this Hopf bifurcation and its character are shown to be dependent
on Pr. By numerically estimating the coefficients of a Landau equation describing the
weakly nonlinear evolution of perturbations about the convective state near the Hopf
bifurcation point, we show that the character of the bifurcation changes from subcritical
to supercritical as Pr becomes larger than 18.5. For comparison we mention that the
Prandtl numbers for water, alcohol, silicon oil, and glycerine, respectively, are 6.75, 16.6,
41, and 7250 (Landau & Lifshitz 1987).

We emphasise that the contributions this model makes to the study of the ther-
mosyphon problem are that it captures the transition from the trivial to convective
state in close agreement with full three-dimensional simulations, and it captures stable
periodic flow. By assuming the flow profiles are radially symmetric, we allow for more
complex profiles, as seen by experiments, than do Lorenz-type ordinary differential equa-
tion (ODE) models. Our model is limited in that it cannot capture asymmetric flow
reversals, which become evident in experiments as the aspect ratio is increased. The
model is valid for laminar flow in the range of Prandtl and Grashof numbers used in this
work.

The outline for this paper is as follows. In §2, we give a derivation of our partial
differential equation (PDE) model and compare it to the common thermosyphon model,
a Lorenz-like ODE model. Section 3 explores the stability of the trivial branch up to the
first bifurcation point, a pitchfork bifurcation, and discusses its global stability. We also
provide results of numerical calculations in two and three dimensions that validate our
asymptotic analysis. In §4 we analyse the stability of the convective branch, identify the
second bifurcation as a Hopf bifurcation, and identify and analyse the transition between
the regions of sub- and super-criticality of this bifurcation. In §5 we present the numerical
framework that we use in this research. Our conclusions are found in §6.
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Figure 1. Problem geometry

2. Problem formulation
We study flow in a closed loop thermosyphon—a tube which is bent into a vertical

closed loop, heated symmetrically from below. The cross-section of the tube and the
shape of the loop can be arbitrary, though the majority of this paper assumes a circular
cross-section and circular loop.

We assume that the radius of the tube is small compared to its length, so that we can
think of the flow as if it takes place in a straight tube with gravity a function of the
axial distance along the tube. To achieve this reduction, periodic boundary conditions
are imposed on all the model variables (see figure 1).

Begin with the Boussinesq equations

∇ · u = 0 (2.1)

∂u
∂t

+ u · ∇u +∇
(

p

ρ

)
= ν∇2u + gα(T − T0)ez (2.2)

∂T

∂t
+ u · ∇T = κ∇2T. (2.3)

where u is velocity, p is pressure, T is temperature, and t is time, and the parameters are
ρ (density), ν (kinematic viscosity), g (gravity), α (thermal expansion), and κ (thermal
diffusivity). T0 is a reference temperature, and ez is the unit vector in the z direction.
Then enforcing that the flow has only an axial velocity component and introducing the
gravity function f(2πz/L) giving the component of gravity in the axial direction, one
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arrives at the equations
∂w

∂z
= 0 (2.4)

∂w

∂t
+

∂

∂z

(
p

ρ

)
= ν∇2w + α(T − T0)gf

(
2πz

L

)
(2.5)

∂T

∂t
+ w

∂T

∂z
= κ∇2T (2.6)

Here w is axial velocity and z is the axial direction. It is easily seen by taking the z-
derivative of (2.5) that the pressure for the reduced system is independent of x and
y.

The equation of continuity implies that w = w(x, y, t). In these equations the Laplacian
is meant to be the two-dimensional Laplacian with respect to the variables x and y. Using
the variable θ = 2πz/L, we can write our boundary conditions as

T (x, y, θ, t) = T (x, y, θ + 2π, t)

w(x, y, t) = 0 on ∂S

T (x, y, θ, t) = T0 + Twall(θ) on ∂S

where ∂S is the boundary of the cross-section, r = R. For the majority of this paper,
R = 1.

The above set of equations is based on a few approximations. We have assumed that the
velocity has only an axial component which is independent of the axial coordinate, and we
have ignored the axial components of the Laplacian. We make these assumptions in the
case of small aspect ratio (ratio of the cross-sectional radius of the tube to its length).
Previous reduced-order models of the thermosyphon have made the same assumption
concerning the velocity profile, and they have assumed a particular form for this velocity
profile as well, namely that it is parabolic. Our analysis drops this last assumption. The
assumption that the velocity is predominantly in the axial direction is a very sound
assumption; the assumption that the profile is independent of the axial coordinate is an
approximation, and we believe that in order to have an asymptotic model rather than a
heuristic model, this assumption would have to be dropped.

Assuming that our governing equations of motion hold, the flow at any cross-section
described by this system will be axisymmetric, until a bifurcation occurs that breaks this
symmetry. With this in mind, throughout this paper we assume that the flows at any
cross-section are axisymmetric.

We integrate the momentum equation (2.5) over the whole length of the tube, and
periodicity in θ causes the pressure gradient to integrate to zero in that direction. We
arrive at the equation

∂w

∂t
− gαφ = ν∇2w (2.7)

where

φ(x, y, t) =
1
2π

∫ π

−π

f(θ) (T (x, y, θ, t)− T0) dθ.

Similarly if we multiply (2.6) by f(θ), integrate over the length of the tube, integrate
the advective term by parts, and use the periodicity of f(θ) and T , we arrive at the
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equation
∂φ

∂t
− 2π

L
ψw = κ∇2φ (2.8)

where

ψ(x, y, t) =
1
2π

∫ π

−π

f ′(θ) (T (x, y, θ, t)− T0) dθ.

Finally, if we multiply (2.6) by f ′(θ), integrate over the length of the tube, and integrate
the advective term by parts, we arrive at the equation

∂ψ

∂t
+

2π

L
χw = κ∇2ψ (2.9)

where

χ(x, y, t) = − 1
2π

∫ π

−π

f ′′(θ) (T (x, y, θ, t)− T0) dθ.

Equations (2.7–2.9) give us three partial differential equations in the four unknowns
w(x, y, t), φ(x, y, t), ψ(x, y, t), and χ(x, y, t). In general this system is not a closed system
of equations: we could continue multiplying (2.6) by higher derivatives of f(θ) to get
more equations in more unknowns, but the system would not be closed. However, for the
case of a circular loop, where f(θ) = sin(θ), we have

φ(x, y, t) = χ(x, y, t) for f(θ) = sin(θ)

resulting in a closed system of equations. In the next section we show that for an arbitrary
symmetric loop, where f(−θ) = −f(θ), the systems governing the onset of convection
also close.

We need to supplement our partial differential equations with boundary conditions.
These boundary conditions are given by multiplying our exact boundary conditions by
1, f(θ), f ′(θ), or f ′′(θ) and integrating over θ. This leads to the boundary conditions

w(x, y) = 0 on ∂S

φ(x, y) = A0 on ∂S

ψ(x, y) = A1 on ∂S

χ(x, y) = A2 on ∂S

where A0 and A1, and A2 are defined as

A0 =
1
2π

∫ π

−π

f(θ)Twall(θ)dθ

A1 =
1
2π

∫ π

−π

f ′(θ)Twall(θ)dθ

A2 = − 1
2π

∫ π

−π

f ′′(θ)Twall(θ)dθ.

For symmetric loops with Twall an even function, A0 = A2 = 0. For simplicity drop the
subscript, denoting A1 = A.

Define the dimensionless variables by φ = Aφ̃, ψ = Aψ̃, χ = Aχ̃, w = gαR2Aκ
ν2 w̃,

t = R2

ν t̃, x = Rx̃, and y = Rỹ, where R is the radius of the cross-section of the loop.
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Inserting these into (2.7–2.9) gives:

Pr
∂φ̃

∂t̃
−Grψ̃w̃ = ∇̃2φ̃ (2.10)

Pr
∂ψ̃

∂t̃
+ Grχ̃w̃ = ∇̃2ψ̃ (2.11)

∂w̃

∂t̃
− Prφ̃ = ∇̃2w̃ (2.12)

where the parameters are the diffusion ratio Pr (Prandtl number) (2.13), and the control
parameter Gr (Grashof number) (2.14):

Pr =
ν

κ
, (2.13)

Gr =
Ra

Pr
=

2πgαR4A

ν2L
, (2.14)

where Ra = 2πgαR4A/νκL is the Rayleigh number.
For simplicity, we require that ψ has the constant value A at the boundary, so that

ψ̃ = 1. Throughout the rest of this paper we will drop the ˜ notation.
For the majority of this paper we consider the case of a circular loop where f(θ) =

sin(θ), and hence φ(x, y, t) = χ(x, y, t). The only exception to this will be in the next
section where we consider the linear stability of the non-convecting solution. Throughout
this paper, we assume that the cross-section is circular and that there is radial symmetry
in the solutions.

When analyzing circular loops we rewrite the system in vector form as:

(D∂t − I∇2 − P )u = GrF (u), (2.15)

with

u =




φ
ψ
w


 =




u1

u2

u3


 ,

F (u) = u3Mu = u3




0 1 0
−1 0 0
0 0 0


u , D =




Pr 0 0
0 Pr 0
0 0 1


 , P =




0 0 0
0 0 0

Pr 0 0


 .

Boundary conditions are given by

u =




0
1
0


 on ∂S. (2.16)

The system (2.15) along with the boundary condition (2.16) is the reduced PDE model
that is the focus of this study.

Many thermosyphon models begin with a Lorenz-like system. The present model can be
further reduced to the ODE Lorenz model by imposing a parabolic profile and integrating
around the loop. We present the details of such a reduction in Appendix A.
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3. The onset of convection
3.1. Steady solution and bifurcation point

We begin by considering the case of the circular loop, where φ(x, y, t) = χ(x, y, t), and the
equations of motion are governed by the system (2.15) along with its boundary conditions
(2.16). This equation has the steady state solution

u =




0
1
0


 .

To locate the first bifurcation we express the linear problem by an expansion about
the steady solution in a neighborhood of the critical Grashof number, Grp, by

u = u0 + εu1(r) + O(ε2),

where ε measures the projection of the difference between the bifurcated solution and
the steady state solution onto the left critical eigenvector. Since the linearised operator,
along with null boundary conditions and the inner product 〈u, û〉 =

∫ 1

0
(Prφφ̂ + ψψ̂ +

Grpwŵ)r dr is self-adjoint, the temporal spectrum is real and the principle of exchange of
stability holds at the bifurcation point. As with the classical Rayleigh-Bénard problem,
we can determine the critical Grashof number by solving a linear eigenvalue problem.
Specifically, the system for u1 can be written as

∇2u1 +




0 0 Grp

0 0 0
Pr 0 0


u1 = 0

along with null boundary conditions on the perturbation variables.
The equation for ψ1 decouples to give

∇2ψ1 = 0,

ψ1 = 0 on ∂S

which has solution
ψ1 = 0.

The eigenvalue problem for variables φ1 and w1 is given by

∇2

(
φ1

w1

)
=

(
0 −Grp

−Pr 0

)(
φ1

w1

)
(3.1)

(
φ1

w1

)
= 0 on ∂S. (3.2)

To show that the only possible eigenfunctions are Bessel functions, define

λ =
√

GrpPr.

Then φ1 must satisfy the equation

∇4φ1 − λ2φ1 = 0,

which can be written as
∇2Φ− λΦ = 0, (3.3)

where
Φ = ∇2φ1 + λφ1.
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Since φ1 and w vanish on the boundary, φ1 and ∇2φ1 must vanish on the boundary, and
hence Φ must vanish on the boundary. It follows that we have the boundary condition

Φ = 0 on ∂S. (3.4)

Notice that we have defined λ as a positive number, and so the system (3.3) and (3.4)
has only the trivial solution. Then Φ is identically equal to zero. This implies that we
have the equation

∇2φ1 + λφ1 = 0

φ1 = 0 on ∂S.

Assuming that φ1 has the form

φ1(r, θ) = einθq(r)

we see that q(r) must satisfy the eigenvalue problem

1
r

d

dr

(
r
dq

dr

)
− q

n2

r2
+ λq = 0

q(1) = 0

The general solution to this equation that is not singular at the origin is given by

q(r) = KJn(
√

λr)

where Jn is the nth Bessel function. This shows that the system (3.1) – (3.2) has eigen-
functions of the form (

φ1,n

w1,n

)
=

(
c1

c2

)
Jn(γnmr)

where

Jn(γnm) = 0.

Then

−γ2
nm

(
c1

c2

)
=

(
0 −Grp

−Pr 0

)(
c1

c2

)
,

and satisfying the condition ∣∣∣∣
γ2

mn −Grp

−Pr γ2
mn

∣∣∣∣ = 0

gives the critical parameter value for the pitchfork bifurcation,

Grp =
γ4

mn

Pr
.

The minimum over all m and n is given by Grp = γ01, the first zero of the zero-order
Bessel function. Note that this result correlates to the pitchfork bifurcation one finds
in the Lorenz equations, where the pitchfork bifurcation is a function of the Rayleigh
number (Tritton 1988). Because Gr = Ra/Pr, this result can be written Rap = γ4

01.
That this critical value is independent of Prandtl number is characteristic of this type of
flow.

The eigenvector is given by
(

c1

c2

)
=

(
γ2
01

Pr

)
,
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and so the first order solution is

u1 = a1




γ2
01J0(γ01r)

0
PrJ0(γ01r)


 ,

where a1 is constant. Because at the bifurcation point the eigenfunction has radial sym-
metry, and the bifurcation was not symmetry-breaking, then the bifurcated solution has
the same symmetry.

We now briefly comment on the linear stability of the non-convecting state for arbitrary
symmetric loops. By a symmetrical loop we mean one that has reflectional symmetry
about a plane P containing a vertical line. For loops of this form we have f(−θ) = −f(θ),
and hence f ′′(−θ) = −f ′′(θ). Before the onset of convection, the flow will have reflectional
symmetry about the plane P . For this reason we know that for this solution φ0 = χ0 = 0.
In this general case, the equation for ψ is coupled to χ (rather than φ through the term
wχ). However, in the linear theory this is a second order term, since χ0 = 0. It follows
that in the general case the linear theory applies, with the constant A being determined
by the general expression for f(θ) rather than using f(θ) = sin(θ).

3.2. Supercritical pitchfork bifurcation and global stability
The global stability of this trivial branch is proved in Appendix B.

There is a limit in the parameters (Grashof number and Prandtl number) below which
any perturbation will settle to the trivial solution. This limit is identical to the pitchfork
bifurcation point found above. Because the trivial branch is globally stable up to the
pitchfork bifurcation point, this proves that the pitchfork bifurcation is supercritical. The
global stability boundary is also important in that it limits the range of the secondary
bifurcations. This will be discussed further in §4.

The proof of global stability proceeds as follows. First we define an energy function that
depends on a parameter λ. The rate of change of energy can be maximized by a function
Gr(λ) of the Grashof number, and each value of λ corresponds to a different energy rate.
We show that this rate of change of energy is always negative. Then maximizing this
function of Grashof number over all values of λ, we find the optimal energy function,
that is, the one that gives the largest value of Gr for which a decaying energy rate can
be guaranteed. This value of Gr is the global stability limit, and corresponds to the
pitchfork bifurcation point. Details are provided in Appendix B. We note that a similar
result occurs in the Boussinesq equations of the Rayleigh-Bénard problem, and the global
stability of the trivial branch there is proved by Joseph (1976).

3.3. Numerical results
The critical Grashof number is found to be Grp = γ4

01/Pr, or Rap = γ4
01. Using the

spectral code described in §5, we find the onset of convection agrees with this analytic
result to machine precision. Similarly, results with the full three-dimensional simulation
using MPSalsa, also discussed in §5, converge toward the asymptotic result with mesh
refinement. The close agreement of the three independent methods of locating the onset
of convection lend validation to the assumptions we have made in deriving the reduced
PDE model given by (2.15) and (2.16).

This asymptotic result is also in qualitative agreement with models that use the Lorenz
equations, where the initial bifurcation point is at the constant R = 1 (see Appendix A).
Using the Lorenz equations (A 1), with parameters based on our particular derivation,
we find that the system will become convective at Ra = 64; in fact, from our previous
analysis, it is seen to become unstable at Ra = γ4

01 ≈ 33.44, so a thermosyphon model
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Figure 2. Eigenvalues at Pr=7, Gr=50.

Figure 3. Eigenvalues at Pr=7, Gr=300 with N=32.

using our derivation of the Lorenz equations will overpredict the region where the trivial
solution is stable.

Table 1 illustrates the location of the eigenvalues found with the spectral code. Notice
the convergence of the eigenvalues with increased resolution. For a variety of Gr numbers,
32 modes suffice to find the eigenvalue to 8 significant figures. Figures 2 and 3 illustrate
the location of eigenvalues in the complex plane for various Grashof numbers for Pr=7,
computed with the spectral eigenvalue code. Table 2 compares results for the most unsta-
ble eigenvalue computed using the finite element code, MPSalsa with results computed
using the spectral eigenvalue code. This demonstrates that the full three-dimensional
simulation requires a quite refined mesh to achieve the accuracy of the spectral method,
though a coarser mesh is sufficient to capture the transition within a given range of
Grashof values. Details of the numerical methods of each code are presented in §5.

4. Stability and bifurcation of the convective branch
In this section, we will examine the stability of the convective branch and analyse the

Hopf bifurcation. We introduce a method that allows us to obtain the criticality of this
Hopf bifurcation solution.
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N λ1 λ2 λ3

Pr = 7, Gr = 4; Grp = 4.78

16 −0.11986932 −0.82616942 −4.20077833
32 −0.11986928 −0.82616942 −4.20077531
64 −0.11986928 −0.82616942 −4.20077531

Pr = 7, Gr = 5; Grp = 4.78

16 3.3436286822× 10−2 −0.82616942 −4.16298621
32 3.3436286827× 10−2 −0.82616942 −4.16298317
64 3.3436286827× 10−2 −0.82616942 −4.16298317

Pr = 20, Gr = 1; Grp = 1.67

16 −0.11280433 −.28915930 −1.48906023
32 −0.11280433 −.28915930 −1.48905918
64 −0.11280433 −.28915930 −1.48905918

Pr = 20, Gr = 2; Grp = 1.67

16 5.35008552× 10−2 −0.28915930 −1.45463818
32 5.35008552× 10−2 −0.28915930 −1.45463711
64 5.35008552× 10−2 −0.28915930 −1.45463711

Table 1. The first three eigenvalues of flow in a thermosyphon for the trivial branch. N=number
of spectral modes. Note that the trivial flow becomes unstable at Gr = γ4

01/Pr. Note that λ2

depends only on the ψ component of temperature and so is independent of Gr.

4.1. Convective solution and bifurcation point

For Gr > Grp, we compute the convective solution to the system (2.15) and (2.16)
numerically using the spectral code described in §5. Solution profiles computed with this
code are given in figures 8–10.

The system resulting from linearising about the convective branch is given by (see
Appendix C)

(D∂t − I∇2 − P )u1 = GrhJ0u1 (4.1)

This system can be cast as a generalized eigenvalue problem to determine the critical
Grashof number, Grh, indicating where the convective solution loses its stability. This is
found to occur through a Hopf bifurcation. See figure 11 for the numerically computed
critical Grashof number as it depends on Prandtl number. In table 3 we report eigenvalues
of the convective branch obtained using the spectral code. We note that attempts to
locate the Hopf bifurcation using MPSalsa have as yet been unsuccessful, due to the large
systems that result from the fine mesh discretizations necessary to capture the dynamics
of the flow at these high Grashof and Prandtl numbers. We view this as confirmation
that our strategy of employing a highly accurate reduced PDE model easily discretized
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Pr = 1; Grp = 33.44

N Gr = 30 Gr = 32.5 Gr = 35 Gr = 37.5

20 -0.758 -0.533 -0.316 -0.108
40 -0.389 -0.163 0.054 0.264
80 -0.303 -0.078 0.139 0.348
spectral -0.306 -0.082 0.133 0.341
asymptotic -0.306 -0.082 0.133 0.341

Pr = 7; Grp = 4.78

N Gr = 4.29 Gr = 4.64 Gr = 5 Gr = 5.36

20 -0.176 -0.123 -0.0705 -0.0189
40 -0.0967 -0.0370 0.0171 0.0704
80 -0.0713 -0.0158 0.0387 0.0923
spectral -0.0753 -0.0205 0.03334 0.0865
asymptotic -0.0753 -0.0205 0.03334 0.0865

Table 2. The first eigenvalue of the trivial branch for flow in a thermosyphon computed with

MPSalsa with RT = 1, RH = 10, and N2

16
× (N + N

20
) uniform mesh. The spectral result

at resolution 32 modes corresponds to the eigenvalue computed directly from the asymptotic
model.

by a spectral method is necessary in conducting a stability and bifurcation analysis of
the thermosyphon problem in the parameter range exhibiting periodic behaviour.

4.2. Criticality of the bifurcating solution
We use a weakly nonlinear stability analysis to examine the solution in a neighborhood of
the steady state solution. Additionally, we employ a multiple time-scale analysis, allowing
τ = ε2t, where ε =

√
|Gr −Grh| with Grh the bifurcation point so that Gr = Grh + jε2

with j = ±1 according to whether we consider values of Gr above or below the bifurcation
point. The base state is time independent, and in this analysis one considers perturbations
that can depend on the “slow” time, τ. We make a further rescaling to the time variable
so that the bifurcating periodic solution has frequency 1 with the substitution s = ωt.
The bifurcation frequency will enter the system explicitly.

Assuming completeness of the eigenfunctions of the linearised system, a solution can
be expanded

u(r, t, τ) =
∑

i

ai(τ)eλitui(r) + c.c.,

where c.c. denotes the complex conjugate. The goal is to identify the nonlinear behaviour
of the solution near the bifurcation point.

Expand the solution

u = u0(r) + εu1(s, r) + εu2(s, r) + O(ε3).

Expand the frequency as

ω = ω0 + εω1 + ε2ω2 + O(ε3).



14 E. A. BURROUGHS 1, E. A. COUTS IAS 2 AND L. A. ROMERO 3

N λ1 λ2 λ3

Gr = 10

16 −0.38966583± 1.06623072i −4.22920743± 0.83528015i −6.71435768
32 −0.38967750± 1.06625057i −4.22924245± 0.83529406i −6.71433609
64 −0.38967750± 1.06625057i −4.22924245± 0.83529406i −6.71433609

Gr = 50

16 −0.29153807± 3.22110087i −4.08359747± 2.68818657i −7.10593143
32 −0.29158500± 3.22112920i −4.08324280± 2.68805007i −7.10590921
64 −0.29158500± 3.22112920i −4.08324280± 2.68805007i −7.10590921

Gr = 300

16 −2.86× 10−2 ± 7.76286427i −3.98176664± 7.04824907i −7.06274178
32 −2.74× 10−2 ± 7.76272788i −3.98493589± 7.05070856i −7.06544438
64 −2.74× 10−2 ± 7.76272788i −3.98493592± 7.05070859i −7.06544440

Gr = 350

16 −2.30× 10−3 ± 8.34640116i −3.95978468± 7.60465151i −7.03438673
32 −8.37× 10−4 ± 8.34580017i −3.96462820± 7.60592416i −7.03555062
64 −8.37× 10−4 ± 8.34580016i −3.96462826± 7.60592417i −7.03555065

Table 3. The first three eigenvalues of the convective branch for flow in a thermosyphon with
Pr = 7.0 N=number of modes.

Standard Hopf bifurcation theory gives that ω1 = 0. Consider the expansion in a neigh-
borhood of the critical Grashof number, Gr = Grh. See Appendix C for analysis of the
resulting system under this expansion.

4.3. A numerical scheme to extract Landau coefficients

We can continue the above analysis to characterize the bifurcation. At order ε3 we arrive
at a Landau equation

da(τ)
dτ

= jαa(τ) + β|a(τ)|2a(τ) (4.2)

where the computation of the constants j = ±1 and α and β can be carried out by stan-
dard asymptotic methods as shown in Appendix C. As an alternative to computing the
coefficients explicitly, we can use the following numerical scheme to extract the Landau
coefficients.

It is the signs of the real parts of α and β in (4.2) that determine whether the bifurcation
is sub- or supercritical. In particular, when jα/β > 0, the bifurcation is subcritical, and
when jα/β < 0, the bifurcation is supercritical. Writing a(τ) in polar form as ρ(τ)eiθ(τ)



A reduced-order partial differential equation model for the flow in a thermosyphon 15

and α and β in complex form as αr + iαi, βr + iβi, respectively, gives

dρ

dτ
= jαrρ + βrρ

3

dθ

dτ
= jαi + βiρ

2.

The extraction procedure is as follows. Compute the time integration of the full equa-
tions, with an initial value of u0 + εA1i, where u0 is the convective solution at the
bifurcation point and A1i is the imaginary part of the eigenvector associated with the
leading eigenvalue at the bifurcation point. Note that this is just a particular choice of
constants cr and ci in the O(ε) solution

(cr + ici)eiω0t(A1r + iA1i) + c.c.

At every time t, compute the solution Φ(r, t). The solution must take the form

Φ(r, t, τ) = u0 + ε(a(τ)(A1r + iA1i)eiω0t + c.c. ) + (exponentially decaying modes).

We use this equation to extract the values a(τ), given A1r, A1i, and ω0. In terms of ρ
and θ, we have the equation

Φ(r, t, τ)− u0

ε
=

2((ρ cos θA1r − ρ sin θA1i) cos(ω0t)− (ρ cos θA1i + ρ sin θA1r) sin(ω0t)).

Integrating Φ−u0
ε over a period against cos(ω0t) and sin(ω0t) respectively gives 2(ρ cos θA1r−

ρ sin θA1i) and −2(ρ cos θA1i + ρ sin θA1r). Solving the resulting system of two equa-
tions in two unknowns to find ρ cos θ and ρ sin θ at each point tn, n = 1, 2, 3, . . . yields
an n−vector of sample points. Extract ρn = ρ(tn) from these and formulate the least
squares problem

dρn

dτ
= jαrρn + βrρ

3
n

and solve for the constants αr and βr. We approximate dρ
dτ (tn) = ρ(tn+1)−ρ(tn−1)

ε22π/ω0
+O(ε4).

(See Bergeron et al. (2000) for a discussion of the use of a similar method of extracting
Landau coefficients.)

Table 4 demonstrates the consistency of the extracted coefficients with mode resolution.
Simple linear analysis will give an estimate of the coefficient αr. In table 5 we compare
this linear estimate with the extracted coefficient and notice the close agreement.

Results from running this extraction procedure at different Prandtl numbers for var-
ious Grashof numbers are given in table 5. Solutions evolve for 10 periods before data
is collected (the time step used is 10−4) to allow the next most unstable mode to decay.
Notice the good agreement between the linear analysis and the extracted linear coeffi-
cient α. (The formula for computing dρ

dτ is second order, explaining the error present in
calculating the linear coefficients.)

At Prandtl number 18.5 the bifurcation transitions from sub- to super-critical. Figure
4 shows the ratio of jα/β for various Prandtl numbers for Gr approximately 2% below
(j = −1) and 2% above (j = +1) Grc. From the Hopf bifurcation theorem (Glendinning
1994), when this ratio is positive the bifurcation is subcritical and when it is negative the
bifurcation is supercritical. While the Lorenz equations do predict a supercritical Hopf
bifurcation, they predict the change at a much higher Prandtl number (on the order
of P = 200 (Tritton 1988)). The difference between the present model and the Lorenz
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N extract αr extract βr

Pr = 7 Gr = 345
32 −4.80× 10−4 0.738× 10−4

64 −4.80× 10−4 0.809× 10−4

128 −4.80× 10−4 0.702× 10−4

Pr = 15 Gr = 196
32 −6.33× 10−4 0.197× 10−4

64 −6.33× 10−4 0.196× 10−4

128 −6.33× 10−4 0.199× 10−4

Pr = 20 Gr = 223
32 −4.01× 10−4 -0.065× 10−4

64 −4.01× 10−4 -0.069× 10−4

128 −4.00× 10−4 -0.073× 10−4

Table 4. Landau coefficients as computed for various mode discretizations N

Gr linear αr extract αr extract βr

Pr = 7 Grh = 351.7679
345.0, j = −1 −4.80× 10−4 −4.80× 10−4 0.738× 10−4

358.0, j = +1 −4.68× 10−4 −4.67× 10−4 −0.843× 10−4

Pr = 15 Grh = 200.6050
196.0, j = −1 −6.33× 10−4 −6.33× 10−4 0.197× 10−4

205.0, j = +1 −6.18× 10−4 −6.18× 10−4 −0.209× 10−4

Pr = 20 Grh = 227.9197
223.0, j = −1 −4.00× 10−4 −4.01× 10−4 - 0.065× 10−4

233.0, j = +1 −3.91× 10−4 −3.91× 10−4 0.080× 10−4

Table 5. Landau coefficients for the PDE system with N=32

model is significant in this respect. Note that P corresponds directly to Pr (see Appendix
A), and experimental verification is feasible.

4.4. The supercritical Hopf bifurcation

This model captures periodic behaviour of the flow in the thermosyphon in a parameter
value range that is not found in Lorenz-type models, specifically, the change from a
sub- to supercritical Hopf bifurcation at a Prandtl number of 18.5. This is a significant
difference between the models and is evidence that, in particular for flows with Pr greater
than 18.5, the reduction to the Lorenz equations is not an accurate model of the flow.

The point (Prc, Grc) is the most interesting point in parameter space. Here the branch-
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Figure 4. The ratio of Landau coefficients jα/β for the PDE model indicating the criticality
of the Hopf bifurcation

Figure 5. Plots of solution vs. Grc for Pr < Prc, Pr = Prc, Pr > Prc, respectively.

ing becomes singular, with a Landau equation of the form

da

dτ
= α1a + α5a

5.

In the vicinity of this critical point, the equation is of the form

da

dτ
= α1a + α3a

3 + α5a
5.

where α3 is very small; this corresponds to the first sketch in figure 5. Figure 5 illustrates
the various bifurcation diagrams in the neighborhood of this critical Prandtl number.
For values of Pr just below Prc, there is a subcritical bifurcation. This bifurcation must
turn around, because of the global stability limit, discussed in §3 and Appendix B. At
Prc, the structure is quartic. At Pr > Prc, the bifurcation is supercritical.
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Pr Gr ω w(0) 2π
ω

2πPr
wGr

7 351.7679 8.3657 .1541 .751 .812
12 205.1804 5.1394 .2641 1.22 1.39
15 200.6050 4.6035 .2956 1.37 1.59
25 299.6914 4.4099 .3092 1.43 1.70

Table 6. Estimation of the time it takes for the fluid to circulate around the loop.

4.5. Turbulence
At Grashof and Prandtl numbers of practical interest, the flow in a thermosyphon is
laminar. It is known that the chaotic solutions to the Lorenz equations correspond to
chaotic fluctuations of the fluid as a whole, rather than small scale turbulent effects. Thus
when chaotic motion is seen, it is laminar chaos. See Tritton (1988) for a discussion of
turbulence in the Lorenz model.

Creveling et al. (1975) performed experiments on flow in a closed loop thermosyphon
and estimated that the flow becomes turbulent at a Reynolds number of approximately
1500. In the variables used in this paper, Re = 2Grw

σPr , where w is the dimensionless
velocity. It is interesting to note that for a very narrow tube, the flow will be turbulent.
In the range of Prandtl and Grashof numbers used in the present work, Gr

Pr is of order
10 and w is of order 0.1. Then the model is valid for laminar flow for an aspect ratio of
order 0.01.

4.6. Flow oscillations
Consider flow at the Hopf bifurcation point, where the linear stability analysis finds
oscillatory flow. As an example case, at the onset of the Hopf bifurcation, Pr = 7.0,
Gr = 351.8, the frequency of the oscillation is ω = 8.365. Taking the velocity at the
centre of the profile, w = .154, estimate the time it takes for the fluid to circulate once
around a loop of circumference L by t = L/w. Relating these quantities through the
dimensionless variables yields t = 2πPr/wGr = 0.812. Using the relationship that a
period is 2π/ω gives t = 0.751. The time it takes the fluid to circulate around the loop
is roughly equal to a period of the oscillations. This is in agreement with other studies
Greif et al. (1979)). Results for various Prandtl numbers are reported in table 6.

5. Numerical analysis
5.1. The spectral code

We numerically compute the solution to the system (2.10)–(2.12) at given Pr and Gr
numbers. The primary method of discretization is the pseudospectral method, briefly
described below. More complete discussion can be found, for example, in the works of
Gottlieb & Orszag (1977), Fornberg (1998), and Canuto et al. (1988).

Following the notation of Gottlieb and Orszag, for each t, u(x, t) is an element of a
Hilbert Space H with an inner product and a norm. For each t > 0, u(x, t) is a member
of the subspace B of H where functions in the subspace satisfy the boundary conditions
of the problem.
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In this work we expand the solution

u(x) =
M∑

m=0

amTm(x)

where
Tm(x) = cos(m arccos(x))

are the Chebyshev functions. One gets the expansion coefficients

an =
2
cn

∫ 1

−1

u(x)Tm(x)(1− x)−
1
2 dx

with c0 = 2, cm = 1,m ≥ 1.
The method used here is an integration preconditioned spectral τ (pseudospectral)

method. In this method, the expansion functions are not required to satisfy the boundary
constraints. Rather, the boundary constraints are imposed as conditions for determining
the expansion coefficients, and we make the residual zero at as many spatial points as
possible.

This code uses the Gauss-Lobatto points, xj = cos(πj/M), and so the Chebyshev
expansion is a cosine expansion for which one can use a Fast Fourier Transform.

We will discuss two particular aspects of this numerical method: the preconditioning
by an integral operator and the boundary constraints. The derivative operator is an ill-
conditioned triangular matrix, whereas the integration operator is a banded matrix. Then
preconditioning the system by the appropriate order n integration operator results in a
favorably conditioned system. The first n rows of the system become zero, and one can
replace these with row vectors associated with the boundary constraints. See Coutsias
et al. (1995) for further details.

To investigate the transient and steady state behaviour of the system, we implemented
a time-dependent solver. The spatial component is discretized using the pseudospectral
method and the temporal component, as is customary in the use of spectral methods to
solve PDEs, using a finite difference method.

Consider the equation

Pr
∂u

∂t
= Lu + f(r, t) + N(u)

where f(r, t) is a forcing term and N(u) is a nonlinear term. This code computes Lu and
f(r, t) implicitly and N(u) explicitly. Discussion of the use of implicit-explicit schemes is
found in the paper by Ascher et al. (1995).

As an alternate means to find the steady state flow, we have developed a Newton
code that directly finds a steady solution. This code has the advantage over the time-
dependent solver of quickly locating a steady state, and the matrices used in the Newton
code are the same as those used in finding the eigenvalues of the system. The Newton
code provides confirmation of steady state results obtained via the time dependent code.
In the time dependent code we used time steps between 10−2 and 10−4.

5.2. Three-dimensional calculations with MPSalsa
We will discuss the numerical methods used by MPSalsa to locate steady state solu-
tions of Equations (2.1)–(2.3), the formulation of the eigenvalue problem and the Cayley
transform method, and the numerical solution of the eigenvalue problem.

A full description of the numerical methods in MPSalsa used to locate steady state
solutions of Equations (2.1)–(2.3) is available in Shadid (1999) and the references listed
therein. A brief overview is presented in this section.
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A mesh of quadrilaterals for two-dimensional problems and hexahedra for three-dimensional
problems is generated to cover the domain. Although the code allows for general un-
structured meshes, the simple geometry of the present problem allows the easy use of
structured meshes. For parallel runs, the mesh is partitioned using the Chaco code (Hen-
drickson & Leland 1995) in a way that will distribute work evenly while minimizing com-
munication costs between processors. A Galerkin/least-squares finite element method
(GLS-FEM) (Hughes et al. 1989) is used to discretize the time-invariant versions of the
governing partial differential equations (2.1)–(2.3) into a set of nonlinear algebraic equa-
tions. This formulation includes a pressure stabilization term so that the velocity compo-
nents, temperature and pressure fields can all be represented with equal order nodal basis
functions. GLS-FEM is a consistent stabilized scheme because when the exact solution
is inserted, the Boussinesq equations are satisfied exactly. The code uses bilinear and
trilinear nodal elements for two- and three-dimensional problems, respectively.

Discretization of (2.1)–(2.3) results in the matrix equation
(

M 0
N 0

)[
u̇
ṗ

]
+

(
Ku,T + C(u) −D

DT + G Kp

)[
u
p

]
−

[
g
h

]
=

[
0
0

]
(5.1)

where u is the vector of fluid velocity components and temperature unknowns, p is the
pressure, M is the symmetric positive definite matrix of the overlaps of the finite element
basis functions, Ku,T is the stiffness matrix associated with velocity and temperature,
C(u) is the nonlinear convection, D is the discrete (weak) gradient, DT is the discrete
(weak) divergence operator and Kp is the stiffness matrix for the pressure. G,Kp,N are
stabilization terms arising from the GLS-FEM. The vectors g and h denote terms due
to boundary conditions and the Boussinesq approximation.

The resulting nonlinear algebraic equations arising from setting the time derivative
terms to zero are solved using a fully coupled Newton-Raphson method (Shadid et al.
1997). An analytic Jacobian matrix for the entire system is calculated and stored in a
sparse matrix storage format. At each Newton-Raphson iteration, the linear system is
solved using the Aztec package (Tuminaro et al. 1999) of parallel preconditioned Krylov
iterative solvers. The accuracy of the steady state solve is set by the following stopping
criterion,

(
1
N

N∑

i=1

( |δi|
εR|xi|+ εA

)2
) 1

2

< 1.0,

where εR and εA are the relative and absolute tolerances desired, δi is the update for
the unknown xi and N is the total number of unknowns. We use relative and absolute
tolerances of 10−5 and 10−8, respectively, for this study. In Aztec the code exclusively
uses an unrestarted GMRES iteration with a non-overlapping Schwarz preconditioner
where an ILU preconditioner is used on each sub-domain (each processor contains one
sub-domain). These methods enable rapid convergence to both stable and unstable steady
state solutions. The scalability of these methods to large system sizes and numbers of
processors is demonstrated by the solution of a 16 million unknown model on 2048
processors (Burroughs et al. 2001).

The GLS-FEM results in a spatial discretization of the Navier-Stokes equations with
the Boussinesq approximation. This leads to a finite dimensional system of differential
algebraic equations of the form

Bẋ = F(x), x(0) = x0, (5.2)

where the matrix B is singular (due to the divergence free constraint) and x is a vector
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containing the nodal values of the velocities, temperature and pressure at the nodes of
the finite element mesh. Because of the stabilization terms in the GLS discretization, B,
the matrix associated with the time derivative term in (5.1), is a non-symmetric matrix.

We solve the generalized eigenvalue problem

λBz = J(xs)z ≡ Jz. (5.3)

that arises from the linearisation of (5.2) about the steady state. The matrix J(xs) is
the Jacobian of F(·) linearised about xs. Assume that the eigenvalues are ordered with
respect to decreasing real part; real(λi+1) ≤ real(λi). If all the eigenvalues of (5.3) have
negative real parts, the steady state is stable.

Use a Cayley transform to find the eigenvalues γi of the system

(J− σB)−1(J− µB)z = γz

that are related to the eigenvalues λk of (5.3) via

γi =
λk − µ

λk − σ
i = 1, . . . , n; k = 1, . . . , n

Choose σ > 0 and µ = −σ; we choose the value of σ so that it is of similar magnitude
to the imaginary part of the eigenvalue of interest, and so that σ > Re(λ1). This trans-
formation has the property of mapping a λ in the right half of the complex plane (i.e.
an unstable mode) to a γ outside the unit circle, and those on the left half plane (i.e. a
stable mode) to a γ inside the unit circle. That is,

real(λ) > 0 =⇒ ‖γ‖ > 1.0, and real(λ) < 0 =⇒ ‖γ‖ < 1.0.

Since Arnoldi’s method will converge more rapidly to those eigenvalues with larger mag-
nitudes, this is a very desirable property for calculating eigenvalues for use in linear
stability analysis.

Further details are available in the papers Lehoucq & Salinger (2001), Burroughs et al.
(2004).

To compute the eigenvalues listed in table 2 we set g = β = κ = ν = 1 and f(θ) =
cos(θ). The mesh has N

4 by N
4 mesh divisions around a cross-section and N + N

20 mesh
divisions about the circumference of the loop. For the finest mesh, there are 185,220
unknowns, solved on 64 processors of the Sandia-Intel TFlop machine (ASCI Red) with
333 MHz Pentium processors. The code converges to the steady state easily using a zero
initial guess. The number of GMRES solutions required for each eigensolver iteration is
approximately 240. The time to compute eigenvalues on the finest mesh is on the order
of 2700 seconds.

6. Conclusions
An examination of flow in a thermosyphon has been conducted using a new PDE

model. In the case of a circular loop, the first Fourier modes exactly decouple from all
other Fourier modes, leaving a system of three coupled nonlinear PDEs that completely
describes the flow in the thermosyphon. This is in contrast to all existing models, which
use truncations, adjustable parameters, and other simplifications that are avoided in this
formulation.

The use of this model has allowed the identification of stable periodic flows at much
lower Prandtl number than predicted by Lorenz-type ODE models. In particular, this
model has identified periodic solutions for flows of Prandtl number greater than 18.5.

The trivial solution was found to be globally stable for all Prandtl numbers for Ra <
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Figure 6. The bifurcation diagram at Pr = 7
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Figure 7. An enlargement of the pitchfork bifurcation at Pr = 7.

γ4
01, where γ01 is the first zero of the J0 Bessel function. This global stability limit

coincides with the location of the first bifurcation, indicating the onset of convection in
the thermosyphon.

In figure 7 the bifurcation diagram is shown for Pr = 7. Notice that the thermosyphon
runs most efficiently for Grashof number around 10. For values of Grashof greater than
10, the velocity slows. Figures 8 – 10 show flow profiles calculated with the spectral
code. Near the bifurcation point, the velocity profile is not a parabolic profile; rather
it has developed a “dip.” Notice that it is the φ component of temperature that drives
this change. These profiles show how the Lorenz model will not accurately capture the
dynamics of the flow in the regions where the profiles are not parabolic. We note that
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Figure 8. Velocity and temperature profiles at Prandtl=7, Grashof=5

experiments have not been run with sufficiently small aspect ratios to eliminate three-
dimensional effects of the flow. For example, experiments by Sano (1991) are run with
aspect ratios of approximately .03 and .01, and by Stern et al. (1988) at .05, and both
report flows that are not radially symmetric and have three-dimensional effects. It should
also be noted that these experiments were run with water and ethyl alcohol, with Prandtl
numbers around 7 and 15 respectively, so they do not span the Prandtl numbers in the
range of interest of our results, particularly, flows with Pr > 18.5.

Figure 11 shows the critical Grashof number, Grh, as a function of Prandtl number.
The Lorenz equations predict that the Hopf bifurcation occurs at the critical value Gr =
64(Pr + 4)/Pr − 2; for Pr = 7, for example, this gives Gr = 140.8, where our analysis
shows the critical value is Gr = 351.8; the Lorenz equations underpredict the region where
the convective solution is stable. Compare the curves of the predicted Hopf bifurcation
by the Lorenz and PDE models in figure 11. Both exhibit a vertical asymptote as a lower
bound, but the shape of the curve differs significantly as Pr grows.

There is significant difference between the Lorenz model and our reduced PDE model in
predicting whether the Hopf bifurcation is sub- or supercritical. As discussed in §4.3, our
PDE model predicts that the Hopf bifurcation is subcritical for Prandtl numbers less than
18.5 and supercritical for Prandtl numbers above that value. The Lorenz equations, on the
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Figure 9. Velocity and temperature profiles at Prandtl=7, Grashof=100

other hand, predict that the Hopf bifurcation is subcritical for this entire range of values.
Noting the significant difference in the shape of the curves in figure 11 near Pr = 18,
it is not surprising that the two models also differ significantly in their predictions of
criticality beyond this point.
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Appendix A. Reduction to the Lorenz model
The Lorenz equations (Lorenz 1963) are a set of ordinary differential equations that,

for certain parameter values, provide a simple model of flow in a thermosyphon. Most
reported investigations of the thermosyphon problem use a reduction to the Lorenz equa-
tions. This type of model exhibits the flow pattern of convection leading to oscillation
and chaos. We will compare the simplified PDE model (2.10—2.12) to the Lorenz model
by imposing a parabolic profile on each of the variables and substituting this into the
equations. For simplicity, we will neglect the curvature term on the right hand side of
the φ and ψ equations.

It is the assumption of a parabolic profile that leads to the most significant limitations
of the Lorenz model. In the flow profiles shown in §6, one can see that for high values of
the Grashof number the profiles deviate dramatically from a parabolic profile. The PDE
model proves to be a better model for capturing the nature of the flow in this region.

To derive the Lorenz model, substitute into (2.10), (2.11), and (2.12)

w(r, t) = ŵ(t)(r2 − 1)

φ(r, t) = φ̂(t)(r2 − 1)

ψ(r, t) = ψ0 + ψ̂(t)(r2 − 1),
and integrate over a circle of radius 1 to get

dŵ

dt
= −8ŵ + Prφ̂

dφ̂

dt
= − 8

Pr
φ̂− 2Gr

3Pr
ψ̂ŵ +

Grψ0ŵ

Pr

dψ̂

dt
= − 8

Pr
ψ̂ +

2Gr

3Pr
φ̂ŵ.

Now to correlate these equations to the Lorenz system, introduce

ŵ =
3ψ0P

16R
X , φ̂ =

3ψ0

2R
Y , ψ̂ =

3ψ0

2R
Z , t =

P

8
T , Pr = P , Gr =

64R

ψ0P
(A 1)

to arrive at the set of equations

dX

dT
= −PX + PY

dY

dT
= −Y + RX −XZ

dZ

dT
= −Z + XY.

which correspond to the Lorenz system (see (Tritton 1988)).

Appendix B. Global stability of the trivial branch
We will analyse the global stability of the trivial solution. There is a limit in the

parameters (Grashof number and Prandtl number) below which any perturbation will
settle to the trivial solution. This limit is identical to the pitchfork bifurcation point found
in §3. Because we will show that the trivial branch is globally stable up to the pitchfork
bifurcation point, this provides a proof that the pitchfork bifurcation is supercritical.
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The proof of global stability will proceed as follows. First we will define an energy
function that depends on a parameter λ. The rate of change of energy can be maximized
by a function Gr(λ) of the Grashof number, and each value of λ corresponds to a different
energy rate. We will show that this rate of change of energy is always negative. Then
maximizing this function of Grashof number over all values of λ, we find the optimal
energy function, that is, the one that gives the largest value of Gr for which a decay-
ing energy rate can be guaranteed. This value of Gr is the global stability limit, and
corresponds to the pitchfork bifurcation point.

To facilitate the analysis, rescale equations 2.10–2.12 so that the Grashof number
appears symmetrically. Define

w =
√

Grw̃.

Then equations B 1–B 3 become

Prφt =
√

Grw̃ψ +∇2φ (B 1)

Prψt = −
√

Grw̃φ +∇2ψ (B 2)

w̃t =
√

GrPrφ +∇2w̃. (B 3)

along with boundary conditions

φ(1) = w(1) = 0

ψ(1) = 1 .

For simplicity, we will drop the˜on the w.
Consider a disturbance (φ̂, ψ̂, ŵ) about the base flow (φ0, ψ0, w0); for the trivial branch,

this base flow is (0, 1, 0), so that

(φ, ψ,w) = (0 + φ̂, 1 + ψ̂, 0 + ŵ).

The disturbance to the base flow satisfies:

φ̂t =
√

Gr

Pr
ŵ +

√
Gr

Pr
ŵψ̂ +

1
Pr
∇2φ̂

ψ̂t = −
√

Gr

Pr
ŵφ̂ +

1
Pr
∇2ψ̂

ŵt =
√

GrPrφ̂ +∇2ŵ.

From here on we drop the hat notation.
Now form a family of energy functions that depend on the parameter λ:

E = 〈φ2〉+ 〈ψ2〉+ λ〈w2〉, (B 4)

where 〈u, v〉 denotes the integral
∫ 1

0
u(r)T v(r)r dr :

〈φt, φ〉+ 〈ψt, ψ〉+ λ〈wt, w〉 =√
Gr

Pr
〈w, φ〉+ λ

√
GrPr〈φ,w〉+

1
Pr
〈∇2φ, φ〉+

1
Pr
〈∇2ψ, ψ〉+ λ〈∇2w,w〉.

Use Green’s identity to rewrite the Laplacian terms, using that the disturbance satisfies
null boundary conditions, and Reynolds Transport Theorem to rewrite the time derivative
terms. This leads to the following theorem:

Theorem B.1For equations B 1–B 3, the energy defined by the family of curves B 4 sat-
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isfies the following equation.

∂E

∂t
=
√

Gr

Pr

(
1 + λPr2

) 〈w, φ〉 − 1
Pr
〈|∇φ|2〉 − 1

Pr
〈|∇ψ|2〉 − λ〈|∇w|2〉. (B 5)

This equation is made up of the energy dissipation terms (the gradient terms) and the
energy production terms. We wish to find the balance between dissipation and production
terms so that the total rate of change of energy will always be negative, keeping in mind
that this equation defines the energy for a family of curves, one for each λ.

First we will show that for each λ there is a maximum Grashof number where this rate
of change of energy is always negative. Then we will maximize this over all λ to find the
optimal energy function.

Equation B 5 is of the form

∂E

∂t
=

∫ 1

0

F (r,y,y′)r dr := J

where y = (φ, ψ,w)T . Notice that J is a quadratic functional; it is because of this that
the following analysis holds.

It is clear that for Gr = 0, ∂E
∂t is negative, and that for small values of Gr, there is still

decay. There is a critical value of Gr where there will cease to be decay; one can employ
the Calculus of Variations to calculate this critical value.

First we will formulate the problem as a minimization problem. The critical Gr is
bounded above if the ratio of the dissipation to production is bounded below. That is,

√
Gr < min

(
− 1

Pr 〈|∇φ|2〉 − 1
Pr 〈|∇ψ|2〉 − λ〈|∇w|2〉

1
Pr

(
1 + λPr2

) 〈w, φ〉

)
.

The “decay constant lemma” proved by Joseph (1976) guarantees the existence of a lower
bound for this ratio.

One can use the Calculus of Variations to solve this minimization problem, and this
yields an eigenvalue problem. Taking the first variation of J , one gets

δJ =
∫ 1

0

(F y −
d

dr
Fy′)h(r)r dr = 0.

The solutions y satisfy null boundary conditions. Using the Fundamental Lemma of the
Calculus of Variations, the Euler-Lagrange equation must be satisfied:

Fy − d

dr
Fy′ = 0,

which is the eigenvalue problem

√
Gr

(
1 + λPr2

Pr

)
w +

2
Pr
∇2φ = 0

2
Pr
∇2ψ = 0

√
Gr

(
1 + λPr2

Pr

)
φ + 2λ∇2w = 0.

The equation for ψ decouples and is independent of Gr. Now notice that this is of the
same form as the eigenvalue problem solved in the linear stability analysis of the pitchfork
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bifurcation, equation 3.1. The solutions of this eigenvalue problem have the form
(

φ
w

)
=

(
c1

c2

)
J0(γm0r)

where γ = γ0,k, k = 1, 2, 3, . . . is a zero of the J0 Bessel function. From ∇2φ = −γ2
0kφ

and ∇2w = −γ2
0kw obtain the condition

∣∣∣∣∣
−γ2

0k

Pr

√
Gr

2Pr (1 + λPr2)(√
Gr

2Pr

) (
1 + λPr2

) −λγ2
0k

∣∣∣∣∣ = 0.

The result is stated as a theorem.

Theorem B.2The critical Gr is given by the following equation.

Gr(λ) =
4λγ4

0kPr

(1 + λPr2)2

Each value of λ corresponds to a Grashof number that is the maximum value for which
the energy will always decay. Take the derivative with respect to λ to find the value of λ
that maximizes Gr. This is easily seen to be λ = 1

Pr2 , leading to

Gr ≤ γ4
0k

Pr
.

Depending on the specific root γ0,k of J0, the decay rate has a negative extremum at
Gr = γ4

0k

Pr . However, only the value k = 1 corresponds to a maximum, as is shown below.

B.1. Details of the maximization
The first variation has only determined that there is an extremum; it must be shown
that there is a maximum. Use the following theorem (Gelfand & Fomin 1991):

Theorem B.3If P (x) > 0 and [a, b] contains no conjugate points to a, then
∫ b

a
(Ph′2 +

Qh2)dx is positive definite for all h(x) such that h(a) = h(b) = 0.

A conjugate point ã to a is defined as a point for which − d
dxPh′ + Qh = 0 has a

solution that vanishes for x = a and x = ã but is not identically 0.
The original formulation is of the form

∫ 1

0

(Py
′2 + Qy2)r dr,

where P (x) is

diag[
−1
Pr

,
−1
Pr

,−λ].

For the region to contain no conjugate points, choose the first Bessel zero, γ = γ01, and
then the rate of change of energy, ∂E

∂t , is negative definite, so the extremum found is a
maximum.

The global stability limit for the trivial solution is identical to the linear stability limit
for this non-convective branch, which in terms of Ra is

Rap = γ4
01.
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Appendix C. Hopf analysis
We analyse the convective solution to the system (2.15) and (2.16). Making the sub-

stitutions s = ωt and τ = ε2s, write the system as follows:

(ωD∂s + ε2D∂τ − I∇2 − P )u = GrF (u).

Expand the solution

u = u0(r) + εu1(s, τ, r) + ε2u2(s, τ, r) + ε3u3(s, τ, r) + O(ε4).

Expand the Grashof number as

Gr = Grh + jε2,

where j = ±1, with j = +1 corresponding to Gr > Grh and j = −1 corresponding to
Gr < Grh. Expand the frequency as

ω = ω0 + εω1 + ε2ω2.

This leads to the system

(
(ω0D∂s − I∇2 − P ) + εω1D∂s + ε2(ω2D∂s + D∂τ )

) n∑

k=1

εkuk =

(
u30Mu0 +

n∑

k=1

εk(
k−1∑

l=1

u3k−lMul) +
n∑

k=1

εkJ0uk

)
(Grh + jε2)

where uij denotes the ith component of uj and J0 is the zero-order Bessel function. The
operators at each order are

L0 = ω0D∂s − I∇2 − P

L1 = ω1D∂s

L2 = ω2D∂s + D∂τ .

L3 = ω3D∂s + ω1D∂τ .

The systems at each order are: O(ε0):

L0u0 = Grhu30Mu0

O(ε):
(L0 −GrhJ0)u1 = −L1u0

O(ε2):
(L0 −GrhJ0)u2 = −L1u1 − L2u0 + Grhu31Mu1 + ju30Mu0

O(ε3):

(L0 −GrhJ0)u3 = −L3u0 − L1u2 − L2u1 + Grhu32Mu1 + Grhu31Mu2 + jJ0u1.

We now outline the steps in the asymptotic analysis. Compute u0 by solving the steady-
state equations to get a solution u0(r). Because u0 is independent of time, L1u0 = L2u0 =
L3u0 = 0.

At order ε,
(L0 −GrhJ0)u1 = 0.

Compute u1 by solving the eigenvalue problem to get

u1 = a(τ)A(r)eis + ā(τ)Ā(r)e−is,
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where the bar notation denotes the complex conjugate, and ω0.
At order ε2,

(L0 −GrhJ0)u2 = −L1u1 + Grhu31Mu1 + ju30Mu0.

The term L1u1 will produce expressions in eis, which are resonant terms. Then to sup-
press these resonant terms choose ω1 = 0. The other terms on the right hand side will
produce expressions in e0, e2is, and e−2is, so compute the solution u2 using the method
of undetermined coefficients, by solving a system Lu = b for each of the harmonic terms.

Formulate the O(ε3) problem and use Fredholm’s Alternative Theorem (Keener 1995)
to find a solvability condition.

C.1. Second-order problem

At order ε2, the right hand side is

ju30Mu0 + Grhu31Mu1.

Examine each term. First,

ju30Mu0 = j




u30u20

−u30u10

0




which is known from the order ε0 equation. Second, using the notation Aij for the ith

component of Aj ,

Grhu31Mu1 = Grh(aA31e
is + āĀ31e

−is)M(aA1e
is + āĀ1e

−is)

= 2aāGrh




A31Ā21

−A31Ā11

0


 + a2Grh




A31A21

−A31A11

0


 e2is

+ ā2Grh




Ā31Ā21

−Ā31Ā11

0


 e−2is,

so the right hand side is

j




u30u20

−u30u10

0


 + 2|a|2GrhReal







A31Ā21

−A31Ā11

0







+ a2Grh




A31A21

−A31A11

0


 e2is + ā2Grh




Ā31Ā21

−Ā31Ā11

0


 e−2is.

Solving with this right hand side leads to a solution

u2 =




u12

u22

u32


 := B0(r) + (a2B2(r)e2is + c.c. ),

where

B0 = jb(1)
0 (r) + |a|2b(2)

0 (r)

is the solution of a real PDE with a real right hand side, and so is real. Note that the
vectors B0 and B2 are computed numerically.
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C.2. The Landau equation

Apply Fredholm’s Alternative Theorem (Keener 1995) at order ε3, adopting the notation
used in Joseph (Joseph 1976)

〈a · b̄〉 =
∫ 1

0

a · b̄r dr

[a,b] =
1
T

∫ T

0

〈a · b̄〉dt.

Solve the adjoint homogeneous problem,

(L0 −GrhJ0)∗z = 0

and then require for solvability that f , the right hand side at order ε3, satisfies

[f , z] = 0.

The order ε3 right hand side is

−L2u1 + Grhu32Mu1 + Grhu31Mu2 + jJ0u1.

Examine each term. First,

−L2u1 = −(ω2D∂s + D∂τ )
[
aA1e

is + āĀ1e
−is

]

= −ω2D[aiA1e
is − āiĀ1e

−is]− [
da

dτ
DA1e

is +
dā

dτ
DĀ1e

−is].

Second, using the notation Bij for the ith component of Bj and b
(k)
ij for the ith component

of b(k)
j ,

Grhu32Mu1 = Grh(B30 + a2B32e
2is + ā2B̄32e

−2is)M(aA1e
is + āĀ1e

−is)

= Grh




jb
(1)
30 (aA21e

is) + b
(2)
30 (a2āA21e

is) + (a2āB32Ā21e
is)

−j
(
b
(1)
30 (aA11e

is) + b
(2)
30 (a2āA11e

is) + (a2āB32Ā11e
is)

)

0


 + c.c.

Third,

Grhu31Mu2 = Grh

(
aA31e

is)M(jb(1)
0 + |a|2b(2)

0 + a2B2e
2is

)

= Grh




jb
(1)
20 (aA31e

is) + b
(2)
20 (a2āA31e

is) + j(a2āB22Ā31e
is)

b
(1)
10 (aA31e

is) + b
(2)
10 (a2āA31e

is) + (a2āB12Ā31e
is)

0


 + c.c.

Lastly,

jJ0u1 = ja




u30A21 + u20A31

−u30A11 − u10A31

0


 eis + c.c.



34 E. A. BURROUGHS 1, E. A. COUTS IAS 2 AND L. A. ROMERO 3

Therefore, the right hand side is

− ω2D[aiA1e
is + c.c. ]− [

da

dτ
DA1e

is + c.c. ]

+ Grh




jb
(1)
30 (aA21e

is) + jb
(2)
30 (a2āA21e

is) + (a2āB32Ā21e
is)

−
(
b
(1)
30 (aA11e

is) + b
(2)
30 (a2āA11e

is.) + (a2āB32Ā11e
is)

)

0


 + c.c.

+ Grh




jb
(1)
20 (aA31e

is) + jb
(2)
20 (a2āA31e

is) + (a2āB22Ā31e
is)

b
(1)
10 (aA31e

is) + b
(2)
10 (a2āA31e

is) + (a2āB12Ā31e
is)

0


 + c.c.

+ ja




u30A21 + u20A31

−u30A11 − u10A31

0


 eis + c.c.

Now enforce

[f , z] = 0.

Compute the time integral of this solvability condition first; then the only non-zero
components are constant in time (s). These terms are

− ω2DaiA1 · z̄− da

dτ
DA1 · z̄ + jGrha




b
(1)
30 A21

b
(1)
30 A11

0


 · z̄ + jGrha




b
(1)
20 A31

b
(1)
10 A31

0


 · z̄

+ ja




u30A21 + u20A31

−u30A11 − u10A31

0


 z̄ + Grha2ā




b
(2)
30 A21

b
(2)
30 A11

0


 · z̄

+ Grha2ā




b
(2)
20 A31

b
(2)
10 A31

0


 · z̄ + Grha2ā




B32Ā21 + B22Ā31

B32Ā11 + B12Ā31

0


 · z̄.

Now compute the volume integral of these terms and set it to zero, arriving at an ODE
in a:

α0
da

dτ
= jαa + βa|a|2 (C 1)

where the coefficients α0, α and β are determined via the volume integral.
The nature of the bifurcation has been reduced to the study of an ODE. Use the Hopf

bifurcation theorem as stated in Glendinning (1994):

Theorem C.1(Hopf Bifurcation Theorem, Subcritical Case)
Suppose that ẋ = f(x, y, µ), ẏ = g(x, y, µ) with f(0, 0, µ) = g(0, 0, µ) = 0 and that the

Jacobian matrix evaluated at the origin when µ = 0 is
(

0 −ω
ω 0

)

for some ω 6= 0. If fµx + gµy 6= 0 and c 6= 0 then a curve of periodic solutions bifurcates
from the origin into µ < 0 if c(fmux + gµy) > 0. If fµx + gµy > 0, then the origin is
stable for µ < 0 and unstable for µ > 0. If the origin is stable on the side of µ = 0 for
which the periodic solutions exist, the periodic solutions are unstable and the bifurcation
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is subcritical. The constant c is given by

c =
1
16

(fxxx + gxxy + fxyy + gyyy)+

1
16ω

(fxy(fxx + fyy)− gxy(gxx + gyy)− fxxgxx + fyygyy)

evaluated at (x, y) = (0, 0).

This theorem can be applied as follows. Rescale the equation C 1 to get

da

dτ
= jαa + β|a|2a

Then breaking the system into its real and imaginary parts, the system is in the form in
the theorem as stated above. The requirements for a subcritical bifurcation are met when
j = −1 and αr < 0, βr > 0. The computation of these coefficients is straightforward and
is being undertaken at this time.



36 E. A. BURROUGHS 1, E. A. COUTS IAS 2 AND L. A. ROMERO 3

REFERENCES

Ascher, U. M., Ruuth, S. J. & Wetton, B. T. 1995 Implicit-explicit methods for time-
dependent partial differential equations. SIAM Journal on Numerical Analysis 32, 797–
823.

Bergeron, K., Coutsias, E. A., Lynov, J. P. & Nielsen, A. H. 2000 Dynamical properties
of forced shear layers in an annular geometry. Journal of Fluid Mechanics 402, 255–289.

Boskovic, D. & Krstic, M. 2001 Nonlinear stabilization of a thermal convection loop by state
feedback. Automatica 37(12), 2033–2040.

Burroughs, E., Romero, L., Lehoucq, R. & Salinger, A. 2004 Linear stability of flow in
a differentially heated cavity via large-scale eigenvalue calculations. International Journal
of Numerical Methods for Heat & Fluid Flow 14 (6), 803–822.

Burroughs, E. A., Romero, L. A., Lehoucq, R. B. & Salinger, A. G. 2001 Large scale
eigenvalue calculations for computing the stability of buoyancy driven flows. Technical
Report SAND2001–0113. Sandia National Laboratories, Albuquerque, NM.

Busse, F. H. & Clever, R. M. 1979 Instabilities of convection rolls of moderate Prandtl
number. Journal of Fluid Mechanics 91(2), 319–335.

Canuto, C., Hussaini, M., Quarteroni, A. & Zang, T. 1988 Spectral Methods in Fluid
Dynamics. New York: Springer-Verlag.

Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability . New York: Dover.

Coutsias, E. A., Hagstrom, T., Hesthaven, J. & Torres, D. C. 1995 Integration precondi-
tioners for differential operators in spectral tau-methods. In ICOSAHOM-95. Proceedings.
3. International conference on spectral and high order methods (ed. L. Ilin, A.V.; Ridg-
way Scott), pp. 21—38. Houston Journal of Mathematics.

Creveling, H. F., DePaz, J. F., Baladi, J. Y. & Schoenhals, R. J. 1975 Stability char-
acteristics of a single-phase free convection loop. Journal of Fluid Mechanics 67, 65–84.

Fornberg, B. 1998 A Practical Guide to Pseudospectral Methods . New York: Cambridge Uni-
versity Press.

Gelfand, I. M. & Fomin, S. V. 1991 Calculus of Variations. New York: Dover.

Glendinning, P. 1994 Stability, instability and chaos: an introduction to the theory of nonlinear
differential equations . New York: Cambridge University Press.

Gottlieb, D. & Orszag, S. A. 1977 Numerical Analysis of Spectral Methods: Theory and
Applications. Philadelphia: SIAM.

Greif, R. 1988 Natural circulation loops. Journal of Heat Transfer 110, 1243–1257.

Greif, R., Zvirin, Y. & Mertol, A. 1979 The transient and stability behavior of a natural
convection loop. Transactions of the ASME 101, 684–688.

Hendrickson, B. & Leland, R. 1995 The Chaco user’s guide: Version 2.0. Tech. Rep.
SAND94–2692. Sandia National Labs, Albuquerque, NM.

Hughes, T. J. R., Franca, L. P. & Hulbert, G. M. 1989 A new finite element formulation
for computational fluid dynamics: VIII. the Galerkin/least-squares method for advective-
diffusive equations. Computational Methods Applied Mechanics and Engineering 73, 173–
189.

Japikse, D. 1973 Advances in thermosyphon technology. In Advances in Heat Transfer (ed.
T.F.Irvine & J. Hartnett), , vol. 9, pp. 1–111. New York: Academic Press.

Joseph, D. D. 1976 Stability of Fluid Motions I . New York: Springer-Verlag.

Keener, J. P. 1995 Principles of Applied Mathematics . Reading, Massachusetts: Perseus Books.

Keller, J. B. 1966 Periodic oscillations in a model of thermal convection. Journal of Fluid
Mechanics 26(3), 599–606.

Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics, 2nd Edition: Course of Theoretical
Physics, Vol. 6 . Boston, MA: Butterworth-Heineman.

Lehoucq, R. & Salinger, A. 2001 Large-scale eigenvalue calculations for stability analysis of
steady flows on massively parallel computers. International Journal of Numerical Methods
in Fluids 36, 309–327.

Lorenz, E. N. 1963 Deterministic nonperiodic flow. Journal of the Atmospheric Sciences 20,
130–141.

Martin, G. & Sloley, A. 1995 Effectively design and simulate thermosyphon reboiler systems.
part i. Hydrocarbon Processing 74 (6), 101–109.



A reduced-order partial differential equation model for the flow in a thermosyphon 37

Morioka, N. & Shimizu, T. 1978 Transition between turbulent and periodic states in the
Lorenz model. Physics Letters 66A (6), 447–449.
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